

Fórmulas Cilindros https://www.hidronaval.com.br/

	Fórmul	as Principais			Fó	rmulas Auxiliares
Área do êmbolo	A =	(D) ² x pi 4 x 100	A=	$\frac{(D)^2 \times 0,7854}{100}$		$D = \sqrt{\frac{A \times 100}{0,7854}}$
Área da haste	Ah=	(d) ² x pi 4 x 100	A=	(d) ² x 0,7854	D= \	$\left(\frac{\text{Ac} \times 100}{0,7854}\right)$ + d ²
Área da coroa circula	r Ac=	$\frac{(D^2-d^2) \times pi}{4 \times 100}$	Ac=	$\frac{(D^2-d^2) \times 0,7854}{100}$	d =	$=\sqrt{\frac{A \times 100}{0.7854}}$
Força	$\mathbf{F}=$	P x A	P =	F A	A =	F P
Velocidade	v =	h t x 1000	h=	v x t x 1000	t=	h v x 1000
Velocidade	v =	Q A x 6	Q=	v x A x 6	A =	Q v x 6
Tempo	t=	A x h x 6 Q x 1000	Q=	A x h x 6 t x 1000	h=	Q x t x 1000
Volume do curso	Vc=	A x h	h=	Vc x 10000	A =	Vc x 10000

6 1	G(1 1	TT 1 1	G' 'C' 1
Grandeza	Simbolo	Unidade	Significado
Área	A	cm²	Área útil; do êmbolo, ou da haste, ou da coroa
Diâmetro Êmbolo	D	mm	Diâmetro do êmbolo do cilindro
Diâmetro Haste	d	mm	Diâmetro da haste do cilindro
Força	F	daN	Força de compressão ou de tração em cilindros
Pressão	P	bar (daN/cm²)	Pressão de trabalho
Velocidade	v	m/s	Velocidade de avanço ou recolhimento do cilindro
Curso	h	mm	Distância percorrida pelo êmbolo em um cilindro
Tempo	t	S	Tempo em que o cilindro percorre o curso
Vazão	Q	1/min	Vazão para percorrer o curso em tempo ou velocidade
Volume do curso	Vc	1	Volume de fluído utilizado no deslocamento do êmbolo

Transformação de unidades de medida

Grandeza	Símbolo		De		Para	Multiplique por
Vazão	Q	gpm	galões / min.	lpm	Litros / min.	3,7850
Diâmetro/Curso	D/d/h	in	polegada	mm	Milímetro	25,4
Pressão	P	psi	libras / pol.²	bar	decaNilton/cm ²	0,06895
Pressão	P	Kg/cm²	kilograma/cm²	bar	decaNilton/cm ²	0,9810
Velocidade	v	ft/sec	pé / segundo	m/s	metro/segundo	0,3048
Тетро	t	min	minuto	S	segundo	60
Volume	Vc	1	litro	cm³	centimetro ³	1000
Volume	Vc	1	litro	dm³	decimetro ³	1
Área	A	in²	polegada²	cm ²	centimetro ²	6,452
Força	F	Kgf	kilograma força	daN	decaNilton	0,980665
Força	F	lbf	libra força	daN	decaNilton	0,4448
Volume	Vc	g	galão	1	litro	3,785

Fórmulas - Bombas

ronnulas Pinici	pais		ronnuias Auxinaies					
Vazão Q = -	Des x n x hvol	Des =	Q x 1000	n =	Q x 1000			
vazau Q =	1000		n x hvol		Des x hvol			
Potência Consumida N _{ho} = -	P x Q	- D -	NHp x 441,6 x ht	Q =	NHp x 441,6 x ht			
otencia Consumua N _{hp} –	441,6 x ht	N	Q		P			
Potência Consumida N _{kw} = -	P x Q	- P=	N Kw x 600 x ht	0-	NKw x 600 x ht			
otencia Consumua N _{kw} =	600 x ht	Г =	Q	Q =	P			
Potência Consumida N _{cv} = -	Тхп	- T=	NCV x 716,2	n =	NCV x 716,2			
otencia Consumua N _{ev} –	716,2	1 -	n	11 —	T			
Torque Consumido T = -	P x (Des/100)	- P=	T x 2 x pi x hm	Des =	Tx2x pi x hm x100			
Torque Consumuo 1 =	2 x pi x hm	r =	(Des/100)	Des =	P			
Eficiência Total ht =	hm x hv	hv =	ht	hm =	ht			
Enciencia Total III =	IIIII X IIV		hm	11111 =	hv			

Grandeza	Símbolo	Unidade	Significado
Vazão	Q	l/min	Volume de fluído deslocado em um minuto
Deslocamento	Des	cm³	Volume de fluído deslocado em uma rotação
Rotação	n	rpm	Rotações desenvolvidas em um minuto
Potência Consumida	N_{hp}	Horse Power	Relação do trabalho de uma força em um tempo
Potência Consumida	N_{kw}	Kilowatt	Relação do trabalho de uma força em um tempo
Potência Consumida	N_{cv}	Cavalo Vapor	Relação do trabalho de uma força em um tempo
Pressão	P	bar (daNm/ cm²)	Força fluídica atuante em uma determinada área
Torque Consumido	T	daNm	Relação de uma força pelo espaço percorrido
Eficiência Mecânica	hm	% / 100	Relação transformação da energia mec. em hid.
Eficiência Volumétrica	hv	% / 100	Relação entre vazão teórica e real
Eficiência Total	ht	% / 100	Relação entre a eficiência mec. e a eficiência vol.

Transformação de unidades de medida

Grandeza	Símbolo		De		Para	Multiplique por
Vazão	Q	gpm	galões / min.	lpm	litros / min.	3,7850
Deslocamento	Des	in³	polegada cub.	cm³	centímetro cub.	16,3871
Pressão	P	psi	libras / pol.²	bar	decaNilton/cm ²	0,06895
Pressão	P	Kg/cm²	kilograma/cm²	bar	decaNilton/cm ²	0,9810
Potência Consumida	N	CV	cavalo vapor	Нр	horse power	0,9853
Potência Consumida	N	Hp	horse power	Kw	kilowatt	0,7457
Torque	T	ft.lb	libra x pé	daNm	decaNilton x m	0,1383
Torque	T	in.lb	libra x polegada	daNm	decaNilton x m	0,01152

Fórmulas - Motores Hidráulicos

				_, _,		
Fórmulas l	Princip	pais		Fórmulas	Auxilia	ires
Vazão Q	١	$\frac{\text{Des x n}}{1000 \text{ x hvol.}} \mathbf{Des}$		Q x 1000 x hvol.	- n -	Q x 1000 x hvol.
V azau	<i>2</i> –			n n		Des
Potência Fornecida N	r _ _	P x Q x ht	P =	NHp x 441,6 Q x ht	- 0 -	NHp x 441,6
i otencia Forneciua iv	hp—	441,6	1 -	Q x ht	Q =	P x ht
		P x Q x ht		N Kw x 600	_	NKw x 600
Potência Fornecida N	kw=	600	P =	Q x ht	Q =	P x ht
Dotômaio Esympoido M	т	Txn	т	NCV x 716,2		NCV x 716,2
Potência Fornecida N	c _v = —	716,2	1 =	NCV x 716,2	- n =	Т
Torque Fornecido T	r _ P	x(Des/100)xhm	D _	T x 2 x pi	Dog -	T x 2 x pi x 100
Torque Forneciuo I	_	2 x pi	1 -	(Des/100) x hm	Des –	P x hm
Eficiência Total h	+ _	hm x hv	hv =	ht	hm =	ht
Efficiencia 10tai II	ιι =	IIIII A IIV		hm	- nm =	hv

Grandeza	Símbolo	Unidade	Significado
Vazão	Q	l/min	Volume de fluído deslocado em um minuto
Deslocamento	Des	cm³	Volume de fluído deslocado em uma rotação
Rotação	n	rpm	Rotações desenvolvidas em um minuto
Potência Fornecida	N_{hp}	Horse Power	Relação do trabalho de uma força em um tempo
Potência Fornecida	N_{kw}	Kilowatt	Relação do trabalho de uma força em um tempo
Potência Fornecida	N_{cv}	Cavalo Vapor	Relação do trabalho de uma força em um tempo
Pressão	P	$bar (daNm/\ cm^2)$	Força fluídica atuante em uma determinada área
Torque Fornecido	T	daNm	Relação de uma força pelo espaço percorrido
Eficiência Mecânica	hm	% / 100	Relação transformação da energia mecânica em hidráulica
Eficiência Volumétrica	hv	% / 100	Relação entre vazão teórica e real
Eficiência Total	ht	% / 100	Relação entre a eficiência mecânica e a eficiência volumétrica.