

FATEC-SP - FACULDADE DE TECNOLOGIA DE SÃO PAULO
DEPARTAMENTO DE HIDRÁULICA E SANEAMENTO
Prof. Célio Carlos Zattoni
Julho de 2010

http://www1.fatecsp.br/celio

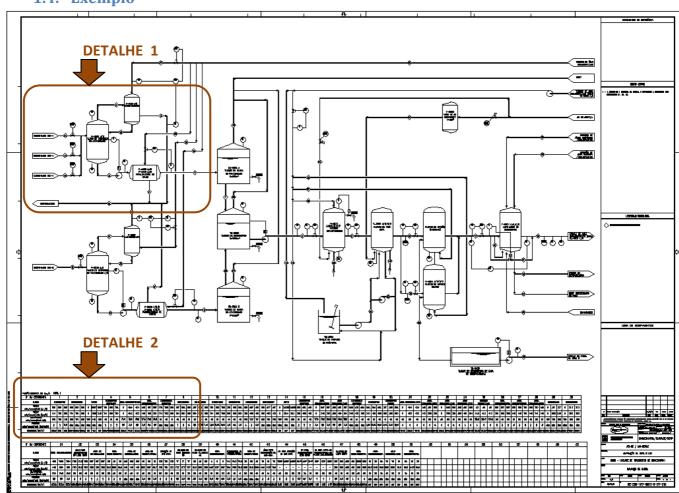
SUMÁRIO

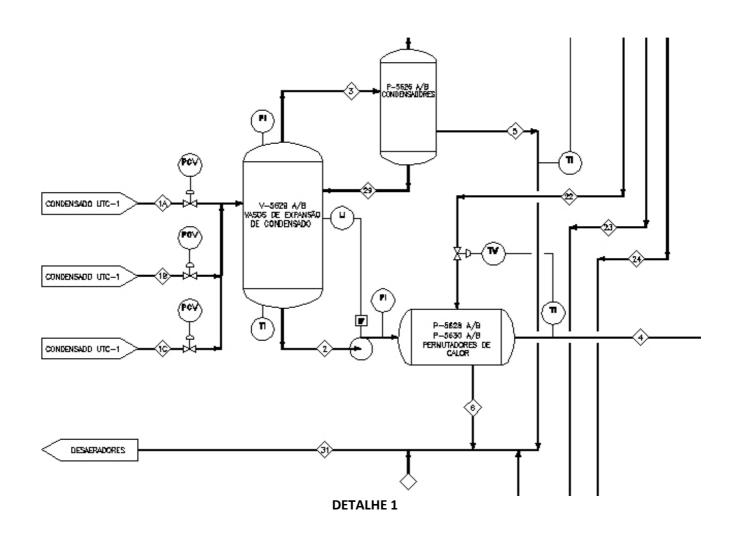
1. FLU	UXOGRAMA DE PROCESSO (PFD - PROCESS FLOW DIAGRAM)	3
1.1.	Introdução	3
1.2.	OBJETIVOS DO PFD	3
1.3.	SIMBOLOGIA	3
1.4.	Exemplo	3
2. FLI	UXOGRAMA DE ENGENHARIA (P&ID – PIPING AND INSTUMENTATION DIAGRAM)	5
2.1	Introdução	5
2.2	OBJETIVOS DO P&ID	5
2.3	SIMBOLOGIA	5
2.4	Exemplo	5
3. PR	INCÍPIOS E FUNDAMENTOS NA ELABORAÇÃO DE FLUXOGRAMAS	8
3.1	GERAL	8
3.2	EQUIPAMENTOS	8
3.3	LINHAS DE PROCESSO E DE UTILIDADES	8
3.4	VÁLVULAS E ACESSÓRIOS DE LINHA	8
3.5	INSTRUMENTAÇÃO E AUTOMAÇÃO	8
3.6	SIMBOLOGIA	8
3.7	TEXTOS, ABREVIATURAS E NUMERAÇÃO DE LINHAS E EQUIPAMENTOS	8
3.8	DIMENSÕES E ELEVAÇÕES.	9
3.9	DOCUMENTOS RELACIONADOS COM OS FLUXOGRAMAS.	9
3.10	EXEMPLOS DE FLUXOGRAMAS	9
3.11	ARRANJO DAS ÁREAS DO DESENHO DE UM FLUXOGRAMA	11
3.12	EXEMPLOS DE APLICAÇÃO	
4. FLI	UXOGRAMAS CARACTERÍSTICOS	13
5. EX	EMPLO PRÁTICO	20
5.1	FOTOS DA UNIDADE PRODUTORA DE CIMENTO-COLA	21
6. SIN	MBOLOGIA PARA FLUXOGRAMAS	24
6.1	ABREVIATURAS MAIS UTILIZADAS EM TUBULAÇÃO	24
6.2	ABREVIATURAS MAIS UTILIZADAS EM EQUIPAMENTOS	25
6.3	ABREVIATURAS MAIS UTILIZADAS EM INSTRUMENTAÇÃO E AUTOMAÇÃO	26
6.4	LINHAS DE CONDUÇÃO DE FLUIDOS	27
6.5	LINHAS E SÍMBOLOS DE INSTRUMENTAÇÃO	28
6.6	SÍMBOLOS DE VÁLVULAS E ACESSÓRIOS PARA TUBULAÇÃO	29
6.7	SÍMBOLOS PARA MÁQUINAS, EQUIPAMENTOS E MOTORES	30
6.8	LEGENDA PARA NUMERAÇÃO DE LINHAS	33
6.9	LEGENDA PARA NUMERAÇÃO DE EQUIPAMENTOS (TAG)	34
6.10	SÍMBOLOS GERAIS	35
7. EX	ERCÍCIOS	36
8 RIF	BLIOGRAFIA	37

1. FLUXOGRAMA DE PROCESSO (PFD - PROCESS FLOW DIAGRAM)

1.1. Introdução

É uma representação esquemática que mostra as relações entre as fases e as necessidades básicas de cada etapa do processo. O fluxograma de processo (PFD) deve ser elaborado por engenheiros e técnicos especializados e experientes na área em questão e deve mostrar: as operações unitárias básicas, os equipamentos principais, o fluxo principal do projeto e os dados do projeto.


1.2. Objetivos do PFD


O fluxograma de processo (PFD) tem por objetivo garantir a viabilidade, a continuidade e a integridade do processo. Serve ainda para definir os perfis de classes de pressão e temperatura para a seleção dos materiais de tubulação e equipamentos. O balanço de massa deve ser concretizado no fluxograma de processo.

1.3. Simbologia

Os símbolos de equipamentos do PFD devem ser simples e objetivos, pois interessam apenas ao processo e os símbolos de instrumentação devem variar de acordo com as necessidades da indústria, devem mostrar apenas a importância de se controlar uma variável e não como isso é feito. A simbologia de instrumentação deve ser conforme ANSI/ISA e ABNT NBR 8190.

1.4. Exemplo

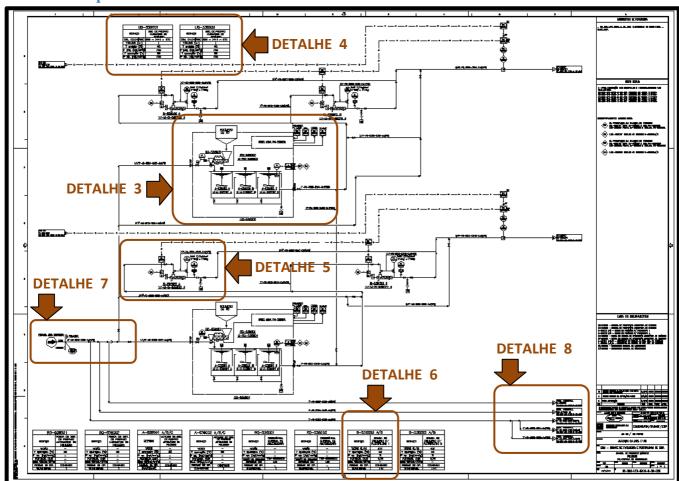
	VAZĀO INDICADA EM Nm/h	NOT	A 1															
	N° DA CORRENTE	DA CORRENTE 1 2 3			4			5		6								
В	FLVID0	CON	CONDENSADO		CONDENSADO		VAPOR		CONDENSADO RESFRIADO		ÁGUA DESMINERALIZADA		ÁGUA DESMINERALIZ					
-	VAZÃO mím∕normal/máx (m•/h)	120	200	200	120	200	200	ů	5957	5957	115	192	192	0	42,4	42,4	146	237
	VAZÃO mím/normal/máx (ton/h)	114	190	190	114	190	190	0	3,56	3,56	114	190	190	0	42,2	42,2	142	230
	TEMPERATURA mím/normal/máx (°C)	100	110	110	100	100	100	100	100	100	45	45	45	77,4	78,6	78,6	77,4	78,6
	PRESSÃO mím/normal/máx (kgf/cm²g)	2	2	5,5	atm	atm	atm	atm	atm	atm	2	2	2	3,5	3,5	3,5	3,5	3,5
_	DENSIDADE (kg/m•)	958,4	951	951	958,4	958,4	958,4	0,6	0,6	0,6	990,3	990,3	990,3	973,5	972,9	972,9	973,5	972,9

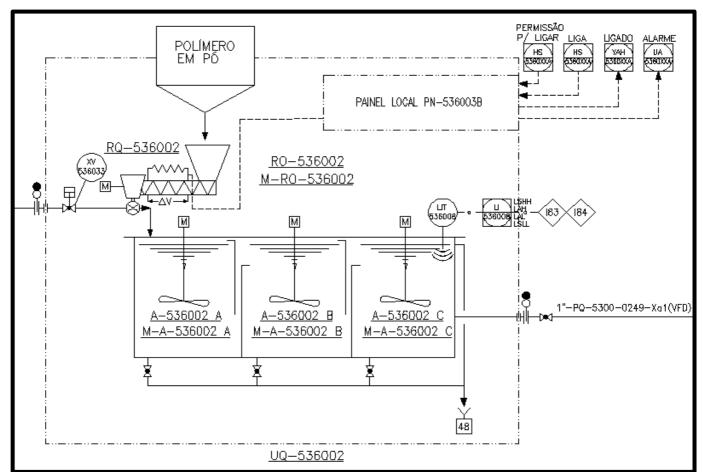
DETALHE 2

2. FLUXOGRAMA DE ENGENHARIA (P&ID – PIPING AND INSTUMENTATION DIAGRAM)

2.1 Introdução

São desenhos esquemáticos que mostram o arranjo funcional de todos os sistemas e equipamentos de processo e utilidades. Os P&ID's são documentos elaborados principalmente pelas equipes de tubulação e mecânica com supervisão da equipe de processos e complementados pela instrumentação e automação. Esse documento multidisciplinar deve mostrar todos os equipamentos, toda a tubulação e a instrumentação ligada ao processo.

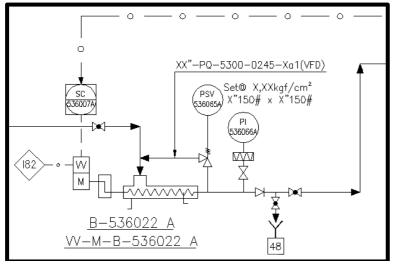

2.2 Objetivos do P&ID


O fluxograma de engenharia (P&ID) tem por objetivo nortear o detalhamento mecânico e de tubulação. O P&ID contém todos os dados dos equipamentos, da tubulação e da instrumentação e automação ligada ao processo.

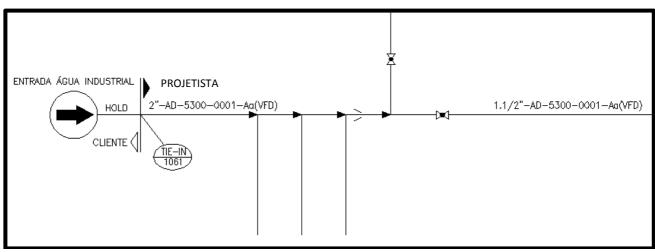
2.3 Simbologia

Os símbolos de equipamentos do P&ID também devem ser simples e objetivos, porém, por se tratar de um documento multidisciplinar, devem constar todos os dados dos equipamentos, da tubulação e da instrumentação e automação ligada ao processo. A simbologia de instrumentação deve ser conforme ANSI/ISA e ABNT NBR 8190.

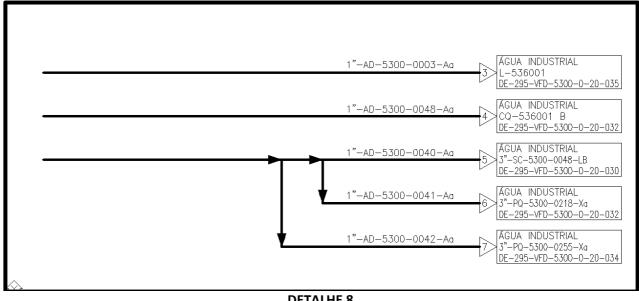
2.4 Exemplo



DETALHE 3


UQ-	-536001	UQ-	536002
SERVIÇO	SIST. DE PREPARO AUTOMÁTICO DE POLÍMERO	SERVIÇO	SIST. DE PREPARO AUTOMÁTICO DE POLÍMERO
DIM. CxLxH(mm)	950 x 2410 x 870	DIM. CxLxH(mm)	950 x 2410 x 870
VOLUME (m³)	1	VOLUME (m³)	1
T projeto (°C)	40	T projeto (°C)	40
P proj. (kgf/cm²g)	ATM	P proj. (kgf/cm²g)	ATM
T operação (°c)	25	T operação (°c)	25
P op. (kgf/cm²g)	ATM	P op. (kgf/cm²g)	ATM

DETALHE 4



B-5360	22 A/B
D 0000	22 / / 0
SERVIÇO	BOMBA DE POLÍMERO P/ FLOTOFILTRO 1
VAZÃO (L/h)	617
T operação (°C)	25
P op. (kgf/cm²g)	3
POTÊNCIA (kW)	0,75
Shut Off(kgf/cm²g)	_
REGIME DE OP.	CONTÍNUO
QUANTIDADE	1+1

DETALHE 5 DETALHE 6

DETALHE 7

DETALHE 8

3. PRINCÍPIOS E FUNDAMENTOS NA ELABORAÇÃO DE FLUXOGRAMAS

3.1 GERAL

- Os "Fluxogramas de Utilidades" deverão ser elaborados em desenhos exclusivos.
- ♣ Os "Fluxogramas de Água de Combate ao Incêndio" deverão ser elaborados em desenhos exclusivos.
- Os "Fluxogramas de Engenharia" deverão ser separados por área de atividade ou de processo industrial e representados em desenhos exclusivos.

3.2 EQUIPAMENTOS

- ♣ Adotar os símbolos já consagrados e/ou normalizados.
- ♣ Os símbolos devem ter um formato mnemônico quando não definidos por simbologia já consagrada.
- Conservar a relação de tamanho dos equipamentos para a simbologia.
- **♣** Equipamentos de mesma simbologia, porém de tamanhos muito diferentes, devem ser representados com tamanhos diferentes no fluxograma.
- ♣ Dispor os equipamentos na folha de desenho conservando a topologia do arranjo de equipamentos.

3.3 LINHAS DE PROCESSO E DE UTILIDADES

- 4 As linhas devem ser diferenciadas pela espessura; grossa e média.
- 👃 As linhas de processo com espessura grossa e as linhas de utilidades com espessura média.
- Todas as linhas devem preferencialmente ser desenhadas na horizontal ou na vertical.
- O sentido de fluxo deve ser preferencialmente da esquerda para a direita.
- Linhas por gravidade devem ter fluxo vertical de cima para baixo ou horizontal.
- 🖶 Linhas sob pressão podem ter fluxo vertical de baixo para cima.
- 👃 Linhas paralelas devem ser afastadas entre si e dos equipamentos de pelo menos 8 mm (ideal 10 mm).
- No cruzamento de linhas deve ser interrompida a linha vertical.
- ♣ Indicar o sentido de fluxo no final dos trechos horizontais e verticais e nos pontos de interligação.
- 🖶 Evitar que linhas longas do fluxograma representem linhas curtas no arranjo e vice-versa.
- As canaletas devem ter fluxo horizontal ou vertical de cima para baixo.

3.4 VÁLVULAS E ACESSÓRIOS DE LINHA

- Devem ser indicadas, sempre que possível, de tal forma a se deduzir os locais a serem instaladas.
- ♣ Indicar a simbologia adotada no próprio desenho de isométrico ou emitir desenho de simbologia.
- ♣ Todas as válvulas das linhas de processo e de utilidades são representadas com o mesmo tamanho.

3.5 INSTRUMENTAÇÃO E AUTOMAÇÃO

- As linhas deverão ser de espessura fina.
- Não há necessidade de interromper as linhas de instrumentação quando do cruzamento com linhas de processo ou de utilidades e vice-versa.
- 4 As válvulas dos instrumentos podem ser representadas com um tamanho ligeiramente menor que as válvulas do processo.

3.6 SIMBOLOGIA

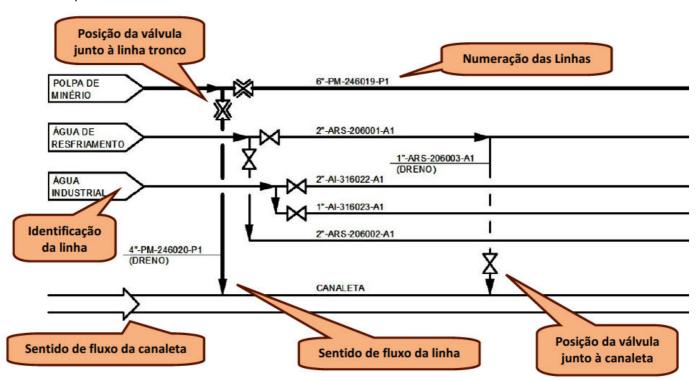
- Adotar simbologia consagrada e/ou conforme norma ANSI/ISA 5.1 ou ABNT NBR 8190.
- 4 Indicar a simbologia adotada no próprio desenho de isométrico ou emitir desenho de simbologia.
- Conservar a relação de tamanho entre os símbolos de equipamentos.

3.7 TEXTOS, ABREVIATURAS E NUMERAÇÃO DE LINHAS E EQUIPAMENTOS.

- Os textos devem ser escritos preferencialmente em letras maiúsculas na horizontal.
- Apresentar a legenda com as abreviaturas utilizadas no fluxograma.
- Apresentar a legenda com a numeração das linhas e equipamentos.
- Numerar uma linha somente em um único ponto, preferencialmente na horizontal e acima da linha.

- Linhas paralelas devem ser numeradas segundo uma coluna.
- Linhas verticais devem ser numeradas com uma linha de chamada na horizontal.
- ♣ Equipamentos de pequenas dimensões devem ter a numeração o mais próximo possível do símbolo.
- 4 Equipamentos de dimensões maiores podem ter sua numeração no interior do símbolo.
- Na numeração das linhas e equipamentos, seguir uma seqüência lógica entre o fluxograma e o arranjo de equipamentos (layout).

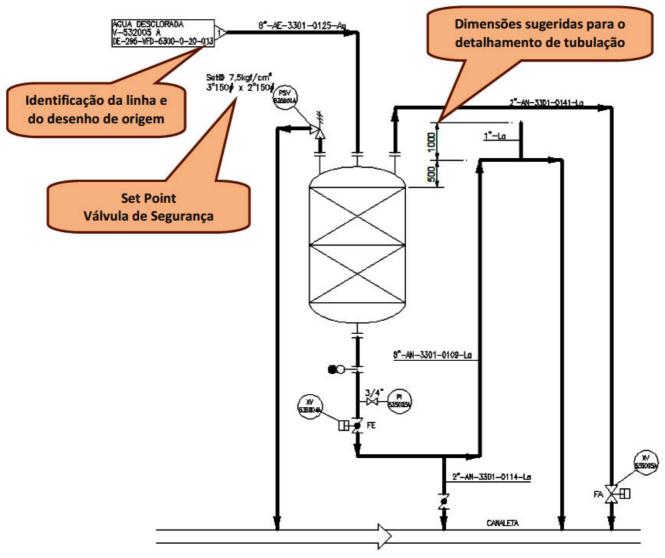
3.8 DIMENSÕES E ELEVAÇÕES.


- ♣ Todo fluxograma é adimensional, porém deverão ser indicadas as dimensões que fazem parte ou são imprescindíveis para o processo.
- ♣ Indicar no fluxograma as elevações que deverão ser adotadas pelo detalhamento.

3.9 DOCUMENTOS RELACIONADOS COM OS FLUXOGRAMAS.

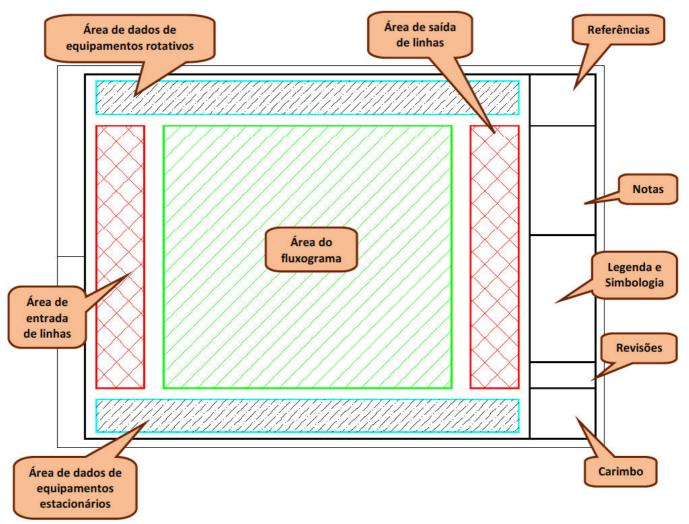
- Lista de linhas
- Lista de válvulas
- ♣ Lista de equipamentos
- Lista de tie-ins

3.10 EXEMPLOS DE FLUXOGRAMAS.


Exemplo 1

Observações:

- a. Na linha de polpa de minério o fluxograma sugere que a válvula de mangote seja instalada junto à linha tronco.
- b. Na linha de água de resfriamento o fluxograma sugere que a válvula de gaveta seja instalada junto canaleta.

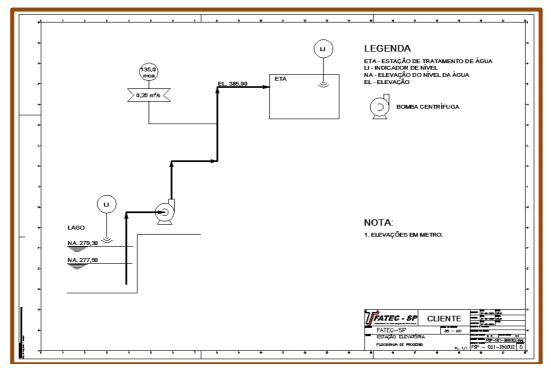

♣ Exemplo 2

Observações:

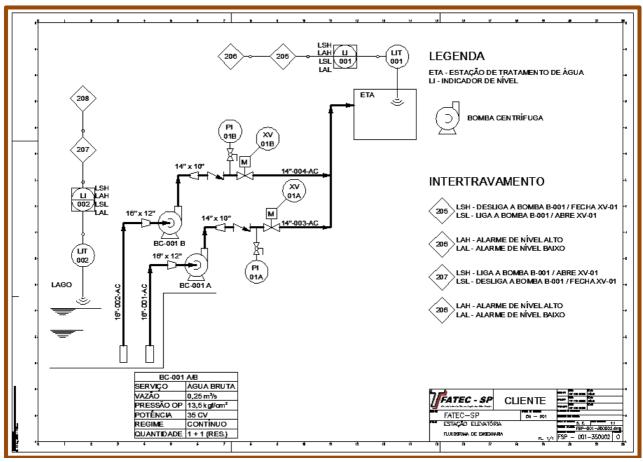
- a. O fluxograma sugere que a seja executado na linha **8-AN-3301-0109-La** um sifão com 500 mm acima do teto falso do vaso.
- b. O fluxograma sugere que a ventilação da linha 8-AN-3301-0109-La se extenda por 1000 mm acima da linha.

ARRANJO DAS ÁREAS DO DESENHO DE UM FLUXOGRAMA. 3.11

EXEMPLOS DE APLICAÇÃO. 3.12


Elaborar o Fluxograma de Processo (PFD) e o Fluxograma de Engenharia (P&ID) para uma estação elevatória de água bruta, desde um lago até a estação de tratamento.

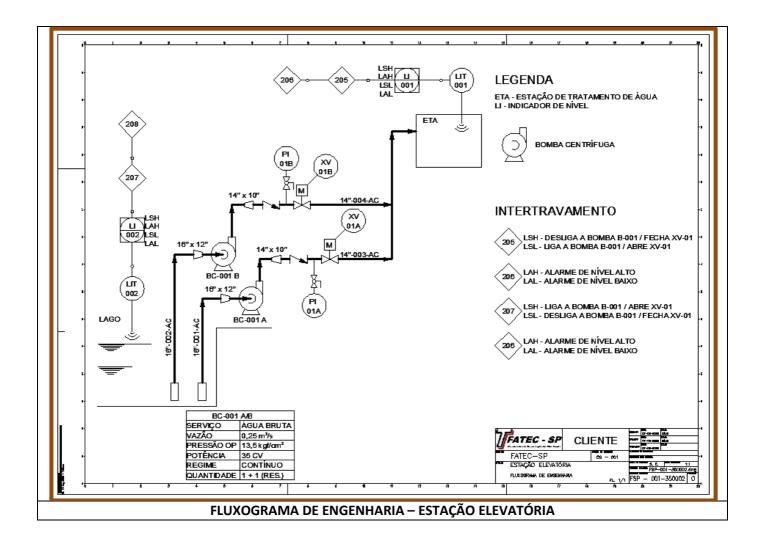
Dados do projeto: Vazão: 0,25 m³/s

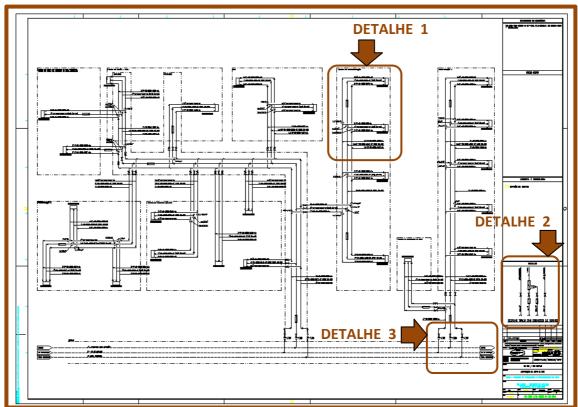

Dados do lago: Nível mínimo: EL. 277,50

Nível máximo: EL. 279,30

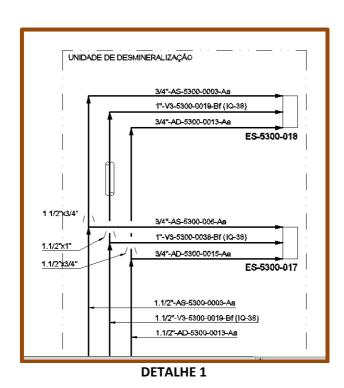
Dados da ETA Elevação de descarga: EL. 385,00

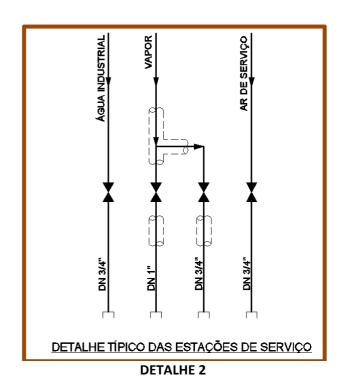
FLUXOGRAMA DE PROCESSO

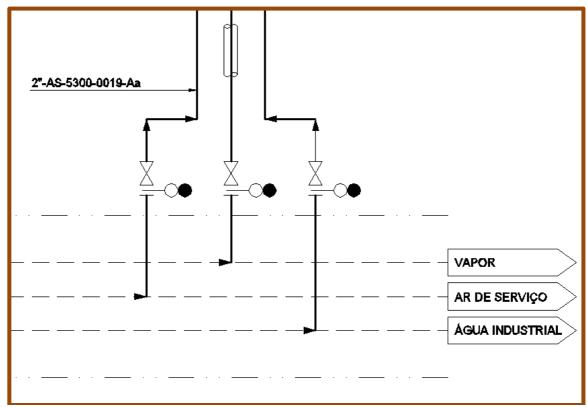

FLUXOGRAMA DE ENGENHARIA

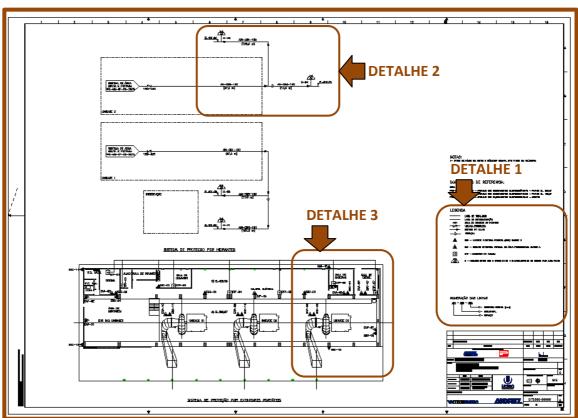

4. FLUXOGRAMAS CARACTERÍSTICOS

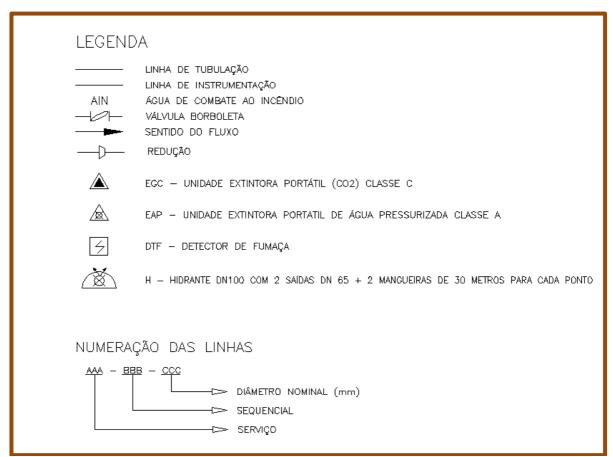
Alguns Fluxogramas de Engenharia (P&ID) são bem característicos, quase sempre são representados da mesma maneira, resultando, na maioria das vezes, desenhos bem semelhantes.

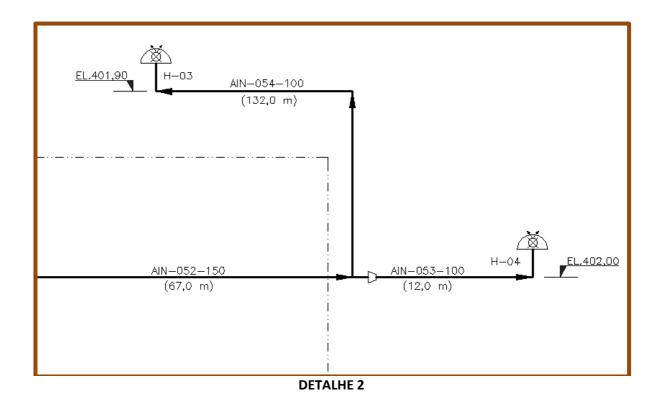

Como exemplo pode-se citar os fluxogramas de:

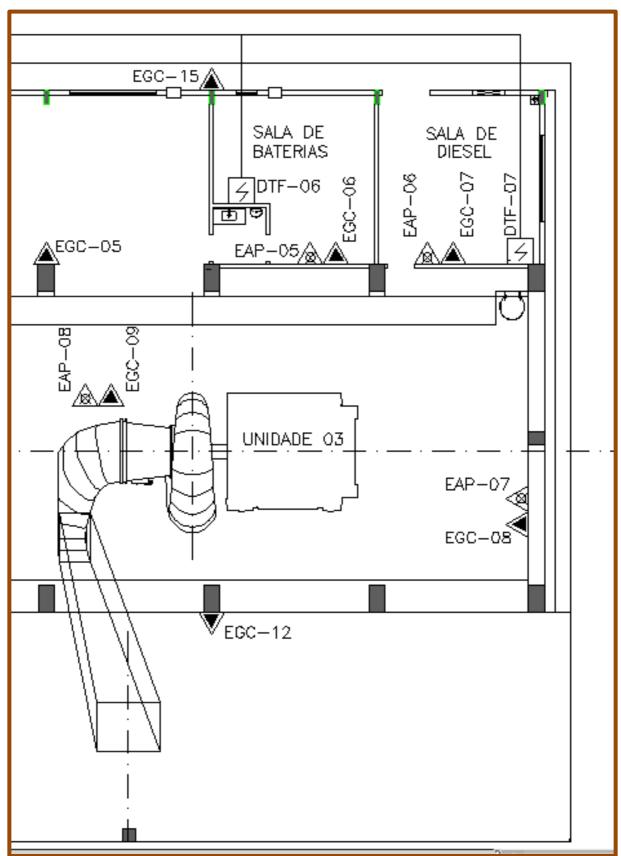

- Estações Elevatórias
- Estações de Serviço
- Combate ao Incêndio
- Serviços Auxiliares em PCH's



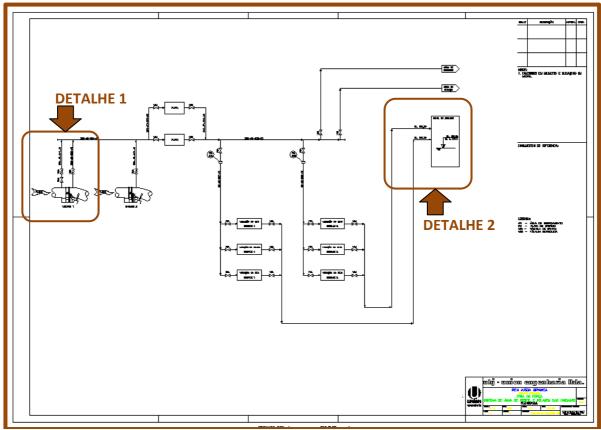

FLUXOGRAMA DE ENGENHARIA – ESTAÇÃO DE SERVIÇO



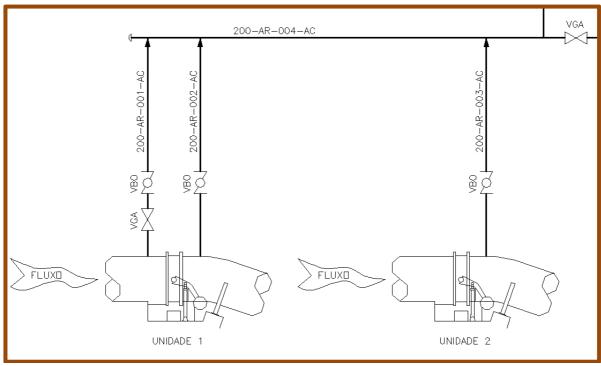

DETALHE 3

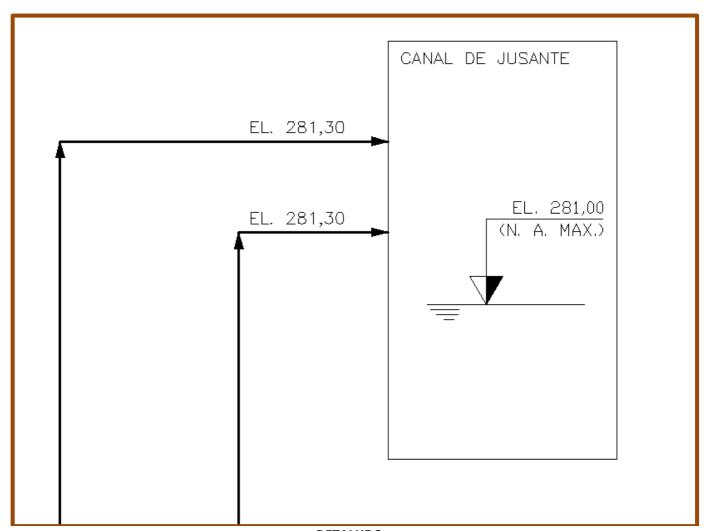


FLUXOGRAMA DE ENGENHARIA - COMBATE AO INCÊNDIO

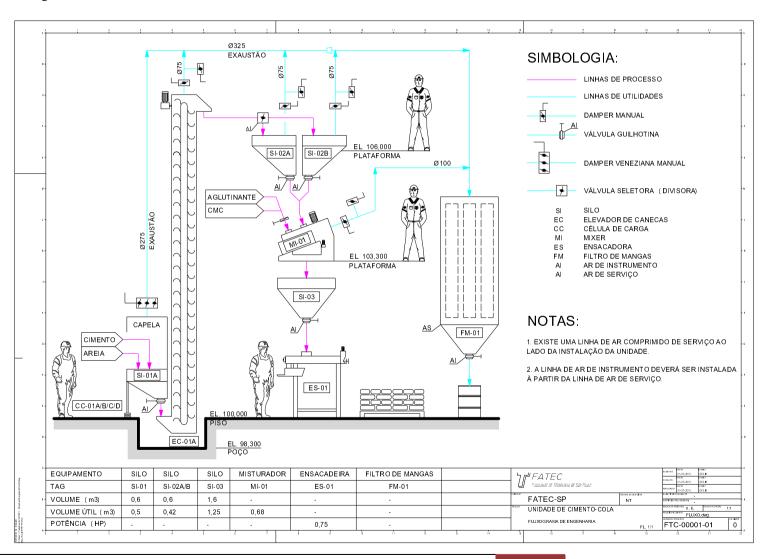


DETALHE 1




DETALHE 3

FLUXOGRAMA DE ENGENHARIA – SERVIÇOS AUXILIARES (EM PCH's)


DETALHE 1

DETALHE 2

5. EXEMPLO PRÁTICO

Elaboração de um fluxograma de uma Unidade Produtora de Cimentocola.

5.1 FOTOS DA UNIDADE PRODUTORA DE CIMENTO-COLA

VISTA GERAL

SI-01 E CAPELA

VISTA FRONTAL

ENSACADEIRA E ESTEIRA

DESCARGA DO ELEVADOR DE CANECAS PARA OS SILOS SI-02A E SI-02B

CÉLULAS DE CARGA DO SILO SI-01

DETALHE DO SILO SI-03

DETALHE DA DESCARGA DO SILO SI-01 PARA EC-01

DETALHE DA TOMADA DE AR DE SERVIÇO PARA AR DE INSTRUMENTOS

6. SIMBOLOGIA PARA FLUXOGRAMAS

6.1 ABREVIATURAS MAIS UTILIZADAS EM TUBULAÇÃO

	VIATORAS PIAIS OTILIZADAS EPI TODOLAÇÃO			
AB	ÁGUA BRUTA			
IN	ÁGUA DE INCÊNDIO			
ARR	ÁGUA DE RESFRIAMENTO (RETORNO)			
ARS	ÁGUA DE RESFRIAMENTO (SUPRIMENTO)			
AD ÁGUA DESMINERALIZADA				
AF ou WF ÁGUA FRIA				
AG	ÁGUA GELADA			
Al	ÁGUA INDUSTRIAL			
AP	ÁGUA POTÁVEL			
AIN	AR COMPRIMIDO DE INSTRUMENTO			
AS	AR COMPRIMIDO DE SERVIÇO			
DR	DRENAGEM			
FE	FALHA ESTACIONÁRIA			
FI	FILTRO			
FY	FILTRO TIPO Y			
FA NA FALHA ABRE				
FF NA FALHA FECHA				
NA NORMALMENTE ABERTO				
NF	NORMALMENTE FECHADO			
PU PURGADOR				
SP	SET POINT			
AM ou TA	TOMADA DE AMOSTRAS			
VAG	VÁLVULA AGULHA			
VBO ou BO	VÁLVULA BORBOLETA			
VRE ou RET	VÁLVULA DE RETENÇÃO			
VDA	VÁLVULA DIAFRAGMA			
VES ou VE	VÁLVULA ESFERA			
VGA ou GAV VÁLVULA GAVETA				
VGL ou GLO	GL ou GLO VÁLVULA GLOBO			
VGU	VÁLVULA GUILHOTINA			
VMA	VÁLVULA MACHO			
VMN ou MAN	VÁLVULA MANGOTE			
VA	VAPOR			
VE	VENTOSA			
-				

6.2 ABREVIATURAS MAIS UTILIZADAS EM EQUIPAMENTOS

AC	AUTOCLAVE			
AG	AGITADOR			
В	BALANÇA			
ВС	BOMBA CENTRÍFUGA			
BD	BOMBA DOSADORA			
BE	BOMBA DE ENGRENAGEM			
BF	BOMBA DIAFRAGMA			
ВО	BOMBA			
ВР	BOMBA DE PARAFUSO			
С	CALDEIRA			
CI	CICLONE			
со	COLUNA			
СР	COMPRESSOR			
E	EJETOR			
EC	ELEVADOR DE CANECAS			
EL	ELEVADOR			
EC	ELEVADOR DE CANECAS			
EN ENSACADEIRA				
EX	EXAUSTOR			
FD	FILTRO DUPLO			
FM	FILTRO DE MANGAS			
F	FORNO			
G	GERADOR			
MI	MIXER			
PE	PENEIRA			
RF	REFERVEDOR			
S ou SI	SILO			
so	SOPRADOR			
T TURBINA				
TC	TC TROCADOR DE CALOR			
TD	TORRE DESCARBONATADORA			
TQ	TANQUE			
TR	TORRE DE RESFRIAMENTO			
V	VASO			
VE	VENTILADOR			

6.3 ABREVIATURAS MAIS UTILIZADAS EM INSTRUMENTAÇÃO E AUTOMAÇÃO

LA	ALARME DE NÍVEL
LAH	ALARME DE NÍVEL ALTO
LAL	ALARME DE NÍVEL BAIXO
PAH	ALARME DE PRESSÃO ALTA
PAL	ALARME DE PRESSÃO BAIXA
WT	CÉLULA DE CARGA
LS	CHAVE DE NÍVEL
LSH	CHAVE DE NÍVEL ALTO
LSL	CHAVE DE NÍVEL BAIXO
LJL	INDICADOR DE NÍVEL
LIC	INDICADOR DE NÍVEL INDICADOR E CONTROLADOR DE NÍVEL
TIC	INDICADOR E CONTROLADOR DE NIVEL INDICADOR E CONTROLADOR DE TEMPERATURA
LL	LÂMPADA PILOTO INDICADORA PARA SINALIZAÇÃO DE NÍVEL
PI	MANÔMETRO
PDI	MANÔMETRO DIFERENCIAL
FO	ORIFÍCIO DE RESTRIÇÃO
FE	PLACA DE ORIFÍCIO (MEDIDOR DE VAZÃO)
TW	POÇO PARA TERMÔMETRO
PS	PRESSOSTATO
PDS	PRESSOSTATO DIFERENCIAL
LR	REGISTRADOR DE NÍVEL
PRC	REGISTRADOR E CONTROLADOR DE PRESSÃO
TRC	REGISTRADOR E CONTROLADOR DE TEMPERATURA
TI	TERMÔMETRO
TS	TERMOSTATO
FT	TOTALIZADOR DE VAZÃO (HIDRÔMETRO)
FIT	TOTALIZADOR E INDICADOR DE VAZÃO
LT	TRANSMISSOR DE NÍVEL
ON / OFF	VÁLVULA DE CONTROLE ABERTA / FECHADA
PCV	VÁLVULA DE CONTROLE DE PRESSÃO
TCV	VÁLVULA DE CONTROLE DE TEMPERATURA
PSV	VÁLVULA DE SEGURANÇA OU DE ALÍVIO
LG	VISOR DE NÍVEL
LG	AISOU DE INIAET

6.4 LINHAS DE CONDUÇÃO DE FLUIDOS

LINHA GROSSA (0,5 a 0,8 mm)	LINHAS DE PROCESSO OU LINHA PRINCIPAL
LINHA MÉDIA (0,3 a 0,4 mm)	LINHA DE UTILIDADES
LINHA FINA (0,15 a 0,2 mm)	LINHA DE INSTRUMENTOS
	BUJÃO (PLUG)
	CANALETA (com sentido de fluxo)
	FLANGE CEGO
	FLEXÍVEL
]++++++++	FLEXÍVEL COM EXTREMIDADES COM ENGATE RÁPIDO
	LINHA COM AQUECIMENTO ELÉTRICO ELECTRIC TRACING
	LINHA COM AQUECIMENTO POR VAPOR STEAM TRACING
	LINHA COM CAMISA DE AQUECIMENTO A VAPOR OU ÓLEO TÉRMICO
	LINHA COM ISOLAMENTO TÉRMICO
ou —	REDUÇÃO CONCÊNTRICA OU EXCÊNTRICA
	SENTIDO DE FLUXO
	TAMPÃO ou CAP

6.5 LINHAS E SÍMBOLOS DE INSTRUMENTAÇÃO

	ALIMENTAÇÃO DE INSTRUMENTOS
LINHA FINA (0,15 a 0,2 mm)	SINAL ELÉTRICO
LINHA FINA (0,15 a 0,2 mm)	
LINHA FINA (0,15 a 0,2 mm)	SINAL PNEUMÁTICO
-O-O-O-O-O-O-O-O- FINA (0,15 a 0,2 mm)	SINAL INTERNO CONFIGURADO PELO SOFTWARE
— / — / — / — / — / — LINHA FINA (0,15 a 0,2 mm)	SINAL ELÉTRICO BINÁRIO
—X——X——X——X———X———————————————————————	TUBO CAPILAR
OU	CÉLULA DE CARGA
	INSTRUMENTO DE FUNÇÃO MÚLTIPLA MONTADO EM PAINEL
	INSTRUMENTO DE FUNÇÃO MÚLTIPLA MONTADO NO LOCAL
	INSTRUMENTO MONTADO EM PAINEL
	INSTRUMENTO MONTADO NO LOCAL
	MEDIDOR VENTURI
	PLACA DE ORIFÍCIO
	TUBO PITOT
	VÁLVULA AUTO-OPERADA COM DIAFRAGMA
	VÁLVULA COM ATUADOR ELÉTRICO (MOTOR)
	VÁLVULA COM ATUADOR PNEUMÁTICO (PISTÃO)
	VÁLVULA COM ATUADOR PNEUMÁTICO DE DIAFRAGMA

6.6 SÍMBOLOS DE VÁLVULAS E ACESSÓRIOS PARA TUBULAÇÃO

	FIGURA OITO (NORMALMENTE FECHADA)
	FILTRO TIPO CESTO DUPLO
	FILTRO TIPO CESTO SIMPLES
	FILTRO TIPO Y
ou 🔀	VÁLVULA DE RETENÇÃO
	RAQUETE
	VÁLVULA AGULHA
	VÁLVULA BORBOLETA (FLANGEADA)
` •	VÁLVULA BORBOLETA (WAFER)
	VÁLVULA DE SEGURANÇA OU DE ALÍVIO
	VÁLVULA DIAFRAGMA
	VÁLVULA ESFERA
	VÁLVULA GAVETA
	VÁLVULA GLOBO
	VÁLVULA GUILHOTINA
	VÁLVULA MACHO
	VÁLVULA MANGOTE
	VENTOSA

6.7 SÍMBOLOS PARA MÁQUINAS, EQUIPAMENTOS E MOTORES

	BALANÇA
	BOMBA CENTRÍFUGA
	BOMBA DOSADORA
	BOMBA DE ENGRENAGEM
	BOMBA DE PARAFUSO
	BOMBA DIAFRAGMA
+ -	CAÇAMBA PARA REJEITO
-	CICLONE
	EJETOR
	ELEVADOR
M	EXAUSTOR
M	MISTURADOR LENTO
M	MISTURADOR RÁPIDO
M	MISTURADOR RASPADOR DE LODO

	MONOVIA
M	MOTOR ELÉTRICO
M VV	MOTOR ELÉTRICO COM VARIADOR DE FREQUÊNCIA
	ROSCA TRANSPORTADORA
	SERPENTINA INTERNA DE AQUECIMENTO OU RESFRIAMENTO PARA TANQUES OU VASOS
	SILO
S	SOLENÓIDE
I SP	SOPRADOR
	TANQUE ATMOSFÉRICO DE FUNDO ELÍPTICO
	TANQUE ATMOSFÉRICO DE TETO CÔNICO
	TANQUE ATMOSFÉRICO DE TETO FLUTUANTE
	TANQUE DE CONCRETO

TROCADOR DE CALOR
VASO COM CAMISA DE AQUECIMENTO OU RESFRIAMENTO
VASO COM SERPENTINA DE AQUECIMENTO OU RESFRIAMENTO
VASO HORIZONTAL
VASO VERTICAL
VENTILADOR

6.8 LEGENDA PARA NUMERAÇÃO DE LINHAS

A-BB-CCC-DDDD-EE-FF	ONDE:
	A DIÂMETRO DA LINHA EM POLEGADAS
	BB SERVIÇO
	CCC ÁREA DA TUBULAÇÃO
	DDDD SEQUENCIAL
	EE ESPECIFICAÇÃO DE TUBULAÇÃO
	FF ISOLAMENTO TÉRMICO
EXEMPLO 1:	2" – DIÂMETRO DA LINHA
2"-AG-360-1200-A1	AG – SERVIÇO: ÁGUA GELADA
	360 – ÁREA DA TUBULAÇÃO
	1200 – SEQUENCIAL DA LINHA
	A1 – ESPECIFICAÇÃO TÉCNICA
A-BB-CCC-DDDD-EE-FF	ONDE:
	A DIÂMETRO DA LINHA EM MILÍMETROS
	BB SERVIÇO
	CCC ÁREA
	DDDD SEQUENCIAL
	EE ESPECIFICAÇÃO DE TUBULAÇÃO
	FF ISOLAMENTO TÉRMICO
EXEMPLO 2:	80 – DIÂMETRO DA LINHA
80-VB-210-1630-A3-40	VB – SERVIÇO: VAPOR DE BAIXA
	210 – ÁREA
	1630 – SEQUENCIAL DA LINHA
	A3 – ESPECIFICAÇÃO TÉCNICA
	40 – ESPESSURA DO ISOLAMENTO TÉRMICO
AA-B-CCDDD-EE	ONDE:
	AA SERVIÇO
	BB DIÂMETRO DA LINHA EM MILÍMETROS
	CC ÁREA
	DDD SEQUENCIAL
	EE ESPECIFICAÇÃO DE TUBULAÇÃO
EXEMPLO 3:	CO – SERVIÇO: CONDENSADO DE VAPOR
CO-100-21030-A6-PP	100 – DIÂMETRO DA LINHA
	21 – ÁREA
	030 – SEQUENCIAL DA LINHA
	A6 – ESPECIFICAÇÃO TÉCNICA
	PP – ISOLAMENTO: PARA PROTEÇÃO PESSOAL

6.9 LEGENDA PARA NUMERAÇÃO DE EQUIPAMENTOS (TAG)

AA-BBB-CCC	ONDE:
	AA SIGLA DO EQUIPAMENTO
	BBB ÁREA
	CCC SEQUENCIAL
EXEMPLO 1:	TQ – SIGLA DO EQUIPAMENTO: TANQUE
TQ-100-008	100 – ÁREA
	008 – SEQUENCIAL
EXEMPLO 2:	V – SIGLA DO EQUIPAMENTO: VASO
V-135-021	135 – ÁREA
	021 – SEQUENCIAL
EXEMPLO 3:	TC – SIGLA DO EQUIPAMENTO: TROCADOR DE CALOR
TC-033-001	033 – ÁREA
	001 – SEQUENCIAL
AA-BBCC	ONDE:
	AA SIGLA DO EQUIPAMENTO
	BB ÁREA
	CC SEQUENCIAL
EXEMPLO 4:	FI – SIGLA DO EQUIPAMENTO: FILTRO
FI-2105	21 – ÁREA
	05 – SEQUENCIAL
EXEMPLO 5:	TR – SIGLA DO EQUIPAMENTO: TORRE
TR-0103	01 – ÁREA
	03 – SEQUENCIAL
AA-BB	ONDE:
	AA SIGLA DO EQUIPAMENTO
	BB SEQUENCIAL
EXEMPLO 6:	BO – SIGLA DO EQUIPAMENTO: BOMBA
BO-01	01 - SEQUENCIAL
EXEMPLO 7:	V – SIGLA DO EQUIPAMENTO: VASO
V-31	31 - SEQUENCIAL

6.10 **SÍMBOLOS GERAIS**

	INÍCIO DO PROCESSO
	FINAL DO PROCESSO
200 L/s <	VAZÃO DE LÍQUIDO
(1,5 Nm³/min)	VAZÃO DE GÁS
	VAZÃO DE VAPOR
150 °C	TEMPERATURA
20 mca	PRESSÃO
TIE-IN	TIE-IN
CONT. DES. N°	BANDEIRA - CONTINUAÇÃO DE LINHA
	LIMITE DE ESCOPO

7. EXERCÍCIOS

Exercício 1

Elaborar o Fluxograma de Engenharia (P&ID) para uma estação elevatória de água desmineralizada, desde um tanque TQ-001 até os tanques TQ-002 e TQ-003. Deverão ser instaladas 3 bombas (2+1) junto ao tanque TQ-001, cada uma com vazão de 0,20 m³/s e altura manométrica total de 45 mca. O tanque TQ-001 esta instalado na elevação EL. 100,00 m e os tanques TQ-002 e TQ-003 estão instalados nas elevações 140,00 e 180,00 m, respectivamente.

Dados:

Vazão do tanque TQ-001 para o tanque TQ-002: Q=0,40 m³/s com duas bombas em paralelo. Vazão do tanque TQ-001 para o tanque TQ-003: Q=0,20 m³/s com duas bombas em série.

Exercício 2

Com relação ao fluxograma apresentado no item 5 da pag. 20.

- Na primeira foto (Vista Geral), identifique:
 - a. O elevador de canecas.
 - b. A Capela.
 - c. O duto de exaustão de 325 mm.
- Na segunda foto (Vista Frontal), identifique:
 - a. A Ensacadeira.
 - b. A Esteira Transportadora.
 - c. O Silo SI-03.
 - d. O Mixer.
- Na quinta foto (Descarga do Elevador de Canecas EC-01 para o Silo SI-02A / B), identifique:
 - a. O Elevador de Canecas.
 - b. A válvula Seletora (Divisora)
 - c. Os Silos SI-02A / B.
- Na penúltima foto (Detalhe da descarga do Silo SI-01 para EC-01), explique:
 - a. Qual a função "Flexivel".
- Na última foto (Detalhe da tomada de Ar de Serviço para Ar de Instrumentos), identifique:
 - a. Cada um dos guatro acessórios da linha.
 - b. A função / serviço das três linhas descendentes.

8. BIBLIOGRAFIA

ANSI/ISA-S5.1-1984 (R1992) Instrumentation Symbols and Identification

Normas e Simbologia de Instrumentação. Disponível em:

http://www.eletronicosforum.com/cursos/Eletronica/cursos/Simbologia_de_instrumentacao.pdf. Acesso em 05.07.2010

ABNT NBR 8190:1983. Simbologia de instrumentação. ABNT – Associação Brasileira de Normas Técnicas